European studies to advance development of inflatable and deployable decelerators

Samuel J. Overend

J. Stephen Lingard, John .C. Underwood

Vorticity Ltd, Chalgrove, Oxfordshire, OX44 7RW, UK

Motivation - Why decelerators?

- Desire to land a heavy mass on Mars
 - Large scientific payloads Manned mission precursors Sample return
- Explore Mars Highlands
 - All missions so far are to lowlands
- Mass and landing altitude
 - Limited by current tech
 - Lifting entry helps a little

Base Image: The Challenge of Mars EDL (Entry, Descent and Landing). Sostaric, R. Boston: JSC, 2010. JSC-CN-20470. Modified to add Curiosity.

Motivation - Why decelerators? (2)

- Landing Altitude and mass is limited by Ballistic Coefficient
- BC is constrained by launcher size
 - Assuming a conventional, rigid aeroshell
 - Maximum: 4.5 m using an Ariane 5
- Need 8 to 10 km AGL for conventional DLS
- Charts:
 - Shows requirements for high altitude landings
 - Supersonic parachute allows BC increase
 - Low altitudes at Mach 5
 - Works against supersonic deployment post entry
 - Shows need low BC throughout entry
- Reached limits of conventional EDLS
 - Need novel, unconventional technology

Motivation - Why decelerators? (3)

- Several possible solutions
 - Rigid lifting aeroshells
 - Deployable/Inflatable aeroshells to augment size-limited rigid aeroshells
 - Supersonic retro-propulsion
 - Supersonic inflatable aerodynamic decelerators
 - Improved thermal protection systems (eg. Dual pulse TPS to enable aerocapture, followed by entry)
- Two ESA Technology Research Programmes discussed further here
 - Aerothermodynamic Tools for Inflatable Hypersonic Decelerators
 - Deployable & Inflatable Heatshield & Hypersonic Decelerators

Aerothermodynamic Tools for Inflatable Hypersonic Vorticity Decelerators

- Enabled capabilities and missions:
 - Analysis/design capability for IAD development
 - Tools, facilities and methods necessary to develop IADs
 - Aimed at a large mass or high-altitude landing on Mars, essential for MSR & manned missions
- Description of activities:
 - Reference missions and requirements
 - Verified by...
 - Test facility and analytical requirements
 - Parallel activity: Flexible TPS testing

Top Left: Inflation sequence for the IREV3 inflatable reentry test vehicle (Image: NASA/AMA)

©Vorticity, 2015

Aerothermodynamic Tools for Inflatable Hypersonic Vorticity Decelerators

- Ground testing
 - Wind tunnels
 - Aerodynamics
 - Structure
 - Plasma tunnels
 - Aerothermodynamics
- Free-flight testing
 - Sounding rockets
 - Aerothermodynamics and aerodynamics
 - Helium Balloons
 - Aerodynamics dynamic stability
 - Ballistic ranges
 - Dynamic stability

Credit: DLR.

Aerothermodynamic Tools for Inflatable Hypersonic Vorticity Decelerators

- Computational methods
 - Computational Fluid Dynamics
 - Shock interaction
 - Rarefied flow DSMC
 - Fluid Structure Interaction
 - Effects of Deformation on flow
 - Structural modelling
 - Inflation and deployment
 - Load paths
 - Must be informed by test data
 - Can examine untestable conditions
- TRP Outcome: Capability development roadmap
 - Tools, facilities and methods necessary to develop IADs

Deployable & Inflatable Heatshield & Hypersonic Decelerators

- Description of activities:
 - Definition of reference missions
 - Preliminary design of DAD & IAD
 - Technology screening and development planning
- Equal importance to both DAD and IAD
- Outcome: Development roadmap
 - For both IADs and DADs

©Vorticity, 2015

Deployable & Inflatable Heatshield & Hypersonic Decelerators

- Preliminary concepts
- Inflatable Aerodynamic Decelerator
 - ExoMars 2018 rover
 - Landing site 2km above MOLA
 - 7.7 meter inflated diameter
 - 3.8 meter packed diameter
 - Proton Launcher
 - ~500 kg IAD & structure

Deployable & Inflatable Heatshield & Hypersonic Decelerators

- Preliminary concepts
- Deployable Aerodynamic Decelerator
 - ExoMars 2018 rover
 - Landing site 2km above MOLA
 - 7.7 meter deployed diameter
 - 3.8 meter packed diameter
 - Proton Launcher
 - ~850 kg for DAD and structure

©Vorticity, 2015

Vorticity

Conclusion

- Improvements to conventional EDLS required to further explore Mars
- Adding an Inflatable / Deployable Decelerator improves conventional EDLS technology
 - Large Landed Mass
 - Highlands
- Two European studies to advance development of inflatable and deployable decelerators
 - Tools and testing facilities and methods
 - Preliminary design for deployable and inflatable decelerators
 - Technology development Roadmaps
- The End